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Abstract—Large language model (LLM) inference has been
a prevalent demand in daily life and industries. The large
tensor sizes and computing complexities in LLMs have brought
challenges to memory, computing, and databus. This paper pro-
poses a computation/memory/communication co-designed non-
von Neumann accelerator by aggregating processing-in-memory
(PIM) and computational network-on-chip (NoC), termed LEAP.
The matrix multiplications in LLMs are assigned to PIM or NoC
based on the data dynamicity to maximize data locality. Model
partition and mapping are optimized by heuristic design space
exploration. Dedicated fine-grained parallelism and tiling tech-
niques enable high-throughput dataflow across the distributed re-
sources in PIM and NoC. The architecture is evaluated on Llama
1B/8B/13B models and shows ∼2.55× throughput (tokens/sec)
improvement and ∼71.94× energy efficiency (tokens/Joule) boost
compared to the A100 GPU.

Index Terms—Processing-in-Memory, Large Language Model,
Network-on-Chip, Parallelism

I. INTRODUCTION

Due to the massive data volume and computational intensity
of large language models (LLMs), current hardware platforms
face significant bottlenecks in memory capacity/bandwidth,
compute scheduling, and hardware communication energy
overhead. Processing-in-memory (PIM) is a widely explored
design technique to accelerate AI workloads by bringing
compute into the memory [1], [2]. PIM speeds up matrix
multiplication (A · B) with a dynamic matrix A and a static
matrix B (DSMM), which is suitable for the operations with
pre-trained weights, e.g., the projection and fully connected
layers in LLMs. However, LLMs also contain immense matrix
multiplications between runtime-generated dynamic matrices
A and B (DDMM) in the attention operations. These DDMMs
are less suitable for traditional PIM due to high time and
energy costs of dynamically reprogramming memory cells.
Moreover, as LLMs scale in model size and input sequence
length, the proportion of DDMMs increases substantially.

To address this, existing PIM-based systems often offload
DDMMs to separate computing units, including hybrid PIM
arrays with configurable precision [3], transposable struc-
tures [4], or fully digital accelerators [5]. This results in
heterogeneous architectures, where computation mapping and
scheduling depend heavily on the stationarity/dynamicity of
the data. Such mapping challenges are further intensified
in systems scaled via network-on-chip (NoC), which intro-
duces additional design complexity and interconnect overhead.

However, most current PIM systems only support algorithm-
specific DDMMs and use custom interconnects at limited
scales [4], [6], [7], falling short in terms of system scalability
and data flow flexibility.

In this work, we present a hardware-software co-design
approach to enable scalable and flexible acceleration of LLM
inference on heterogeneous PIM architectures. Our end-to-end
framework provides partitioning, mapping, and scheduling of
LLM inference workloads with awareness of data stationarity
and system heterogeneity. In addition, the hardware archi-
tecture integrates local compute and memory units within a
scalable NoC to support both DDMM-specific dataflows and
general aggregation operations. The key contributions of this
work are summarized below:

• A fine-grained model partitioning and a heuristically
optimized spatial mapping strategy enable high PIM
utilization and structured layout.

• Temporal scheduling incorporates dedicated context win-
dow tiling and efficient key-value caching (KV cache),
ensuring balanced NoC traffic and utilization.

• A custom NoC capable of efficient data communications,
DDMMs, and aggregations, with re-programmability via
a dedicated instruction set.

• The overall system achieves ∼2.55× throughput im-
provement and ∼71.94× energy efficiency in the infer-
ence of the Llama model compared to the A100 GPUs.

II. PRELIMINARIES

A. Data Stationarity in LLMs

Recent commercial LLMs, such as GPT [8] and the Llama
series [9]–[12], are predominantly decoder-only Transformers.
Each decoder layer comprises attention and feed-forward sub-
layers, which involve successive matrix multiplications (MMs)
and matrix-vector multiplications (MVMs). Although these
models rely on static pre-trained weights, the attention mech-
anism generates significant dynamic data during inference.
To quantify this, consider an attention layer with embedding
dimension D and sequence length S. The amount of static
data (pre-trained weights) is:

DAstatic = 4D2 (1)



Fig. 1. Design challenges and solutions in accelerating LLM inference.

which is independent of the input sequence length. The
dynamic data generated at runtime is:

DAdynamic = 5SD + S2 (2)
which correlates to S. As S increases, the ratio of static to
dynamic data decreases:

DAstatic

DAdynamic
=

4D2

5SD + S2

S=D
=

2

3
(3)

In real-world applications, where S ≫ D, dynamic data
increasingly dominates, particularly under the high-demand
sequence length scaling. This insight arrives at the Challenge
1: the heterogeneous nature of data in LLMs necessitates
differentiated compute and memory strategies for static and
dynamic data.

B. PIM Scaling-up

PIM accelerates MMs/MVMs with static weights, e.g.,
DSMMs, by performing computation within non-volatile
memory. However, the typical array size is limited to 32 ∼
256 [13]–[15], making large-scale operations reliant on parti-
tioning across many arrays. This introduces significant over-
head in buffering and aggregating partial results, which greatly
diminishes overall efficiency [16] if the shared buffer and
aggregators are allocated in an unbalanced manner, as shown
in Fig. 1. Therefore, Challenge 2 is that scaling PIM-based
MMs/MVMs requires efficient interconnection and aggrega-
tion mechanisms to mitigate performance bottlenecks.

C. Target Architecture

To address these challenges, we target a hybrid architecture
that combines PIM with a scalable NoC, referred to as aggre-
gated PIM-NoC. The architecture integrates: i) PIM processing
elements (PEs) – the non-volatile memory units capable of
in-place DSMM computations; and ii) computational routers

Fig. 2. The proposed aggregated PIM-NoC architecture with distributed fine-
grained compute-memory-communication resources.

– the dedicated computing units, termed in-router computing
units (IRCUs) and SRAM-based scratchpad, optimized for
DDMMs and partial results aggregation, as shown in Fig. 2.
Each router-PE pair forms a macro, the basic building block of
a distributed 2D mesh system with unified compute, memory,
and communication resources. Given these novel features com-
pared to traditional von Neumann architecture, the Challenge
3 is that efficiently partitioning, mapping, and scheduling LLM
workloads on such a spatially distributed and heterogeneous
architecture demands compilation framework innovations due
to the vast design space. In this work, we demonstrate an
end-to-end framework that systematically addresses these chal-
lenges.

III. MODEL PARTITIONING AND SPATIAL MAPPING

This section introduces the partitioning scheme for the
projection weight matrices and a spatial mapping strategy that
deploys the partitioned matrices onto the PIM PEs.

A. Partitioning

Partitioning is applied along both row and column dimen-
sions of the static weight matrices, WQ, WK, WV, and
WO ∈ RD×D, to fit the dimensions of the crossbar arrays,
as illustrated in Fig. 3 (a) using an attention layer as an
example. The number of crossbar arrays required to store
each matrix after partitioning is ⌈D

C ⌉2, where C denotes the
width and height of a crossbar array. Intermediate data such
as Q, K, V, and S are also partitioned, introducing additional
collective communication steps for broadcasting partitioned
inputs (Broadcast 1 / 2 ) or reducing partial outputs (Reduc-
tion 1 / 2 / 3 ). The data dependencies and communication
requirements among partitioned matrices and operations are
represented by the directed acyclic graph (DAG) G shown in
Fig. 3 (b).

To execute the whole attention layer on the PIM-NoC
architecture, all nodes and edges in G must be mapped onto
either PEs or routers. This involves two main steps: (i) spatial
mapping, which assigns partitioned static weights and their
associated DSMM operations (represented as orange nodes)
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Fig. 3. (a) Partitioning of an attention layer. This illustration considers multi-head attention (MHA), whereas other attention variants like group-query attention
(GQA) can degrade to this scheme by matrix duplication accordingly. (b) DAG represents the data and operations in the partitioned attention layer. “R-Add”
and “R-Mul” are short for addition and multiplication operations in routers.

Fig. 4. The spatial mapping used in this work. Static weight matrices are
mapped spatially across the crossbar arrays in PEs.

in G to the crossbar arrays in PEs, and (ii) temporal mapping,
which schedules the storage of intermediate data in scratch-
pads, assigns DDMM operations to IRCUs, and orchestrates
the temporal dataflow across the NoC.

B. Spatial Mapping on PEs

A naı̈ve approach to achieving optimal spatial mapping is an
exhaustive design space exploration, which is computationally
prohibitive due to the vast number of possible mappings. For
instance, a static weight matrix of size 1024 × 1024 can be
partitioned into 64 sub-matrices, each fitting a 128 × 128
crossbar array. The total number of possible mappings is
64P64 ≈ 1.27 × 1089, leading to an extremely large and
impractical search space. To efficiently obtain a near-optimal
mapping, we introduce the following heuristic constraints:

• Sub-matrices originating from the same weight matrix
must be placed within a spatially proximate region.

• This region should have a rectangular shape to facilitate
regular dataflows and reduce routing complexity.

• The sub-matrices within this region should be ordered in
a row-major or column-major fashion.

These constraints dramatically reduce the number of mapping
candidates by approximately 1086×, resulting in only 1440
valid configurations. We define the cost function for spatial
mapping as the total communication time, C = T tot

comm, and
use a naı̈ve X–Y routing algorithm as the baseline for com-
munication cost estimation. With the constrained search space,
the spatial mapping exploration completes within 20 seconds.
The selected spatial mapping strategy is visualized in Fig. 4,
and its optimality will be evaluated in Section VI. The entire
attention layer is mapped onto a square region comprising
2⌈D

C ⌉ × 2⌈D
C ⌉ macros, referred to as a tile. Each individual

projection weight matrix is allocated to a rectangular region
of 2⌈D

C ⌉ × 1
2⌈

D
C ⌉ macros within this space, referred to as a

channel. Sub-matrices from WQ/WK/WV are mapped in a
column-major, while those from WO are mapped in a row-
major. We define the following terminology used throughout
the rest of the paper: i) A row-wise processing unit (RPU)
refers to a single row of macros within a channel; and ii) An
RPU group (RG) consists of the RPUs that store a column-
wise partition of WQ/WK/WV or a row-wise partition of
WO as denoted in Fig. 4.

IV. DATAFLOW IN TEMPORAL MAPPING

This section introduces the temporal mapping, which in-
volves storing dynamic data in scratchpads and managing
dynamic data movement and multiplication (DDMM) on IR-
CUs. While spatial mapping addresses partitioning along the
embedding dimension, partitioning along the context window
(i.e., token sequence length) is achieved through loop tiling in
the temporal mapping stage. LLM inference typically consists
of two computing phases: i) the prefill stage, which is MM-
intensive and processes all input tokens in batch, and ii) the



Fig. 5. Context window tiling. (a) Original FlashAttention. (b) Q/K/V tiling. (c) Data layout in scratchpads. (d) Timing diagram.

Fig. 6. Dataflow in RPUs when processing a shard by demystifying on a 4×4 matrix. (a) Row-major reduction of Q/K. (b) Column-major reduction of V .
(c) Dataflow of QKT operation in prefill stage.

decode stage, which is MVM-intensive and generates output
tokens one at a time. The dataflow strategies for both the prefill
and decode stages are introduced in the following subsections.

A. Context Window Tiling

The attention score S ∈ RS×S computed as QKT , has
a size quadratic in the context window length, which often
exceeds on-chip memory capacity. In GPU-based scenarios,
FlashAttention [17], a loop-tiling method, is widely adopted
to reduce the off-chip memory access and avoid materializing
the full S matrix at once. FlashAttention tiles Q/K/V matrices
along the sequence length dimension (S), using two nested
loops: the outer loop iterates over tiled K/V matrices, while
the inner loop processes the tiled Q matrices as illustrated in
Fig. 5 (a).

We adopt this nested loop structure in our design, but intro-
duce three key distinctions: (i) A dedicated fine-grained tiling
scheme is applied to Q/K/V. These matrices are partitioned
into shards along two dimensions, as shown in Fig. 5 (b).
Each row of a shard is distributed across different routers
within a RG, as illustrated in Fig. 5(c). The capacity of each
shard is CS = 2 · Nr = ⌈D

C ⌉, where Nr = 1
2⌈

D
C ⌉ is the

number of routers in an RPU. With this scheme, the context
window length supported by a tile is DS · CS , where DS

is the scratchpad depth per router. (ii) The inner loop is

spatially unrolled across the RPUs, exploiting their parallelism
to improve throughput. (iii) The outer loop is implemented by
rotational broadcasting of the K/V shards across the RPUs
within each RG as shown in Fig. 5(d). The detailed dataflow
for processing a single shard is described in the following
subsections.

B. Prefill Dataflow

1) DSMM: During the projection step, input activations are
fed from the leftmost column into Q/K/V channels (Broadcast
1 as in Fig. 3(b)). Each PE within the Q/K/V channels

generates a vector of partial results per cycle. These partial
results are then aggregated within each RG (Reduction 1 ). It
is noted that the aggregation sequence differs across channels:
row-major in the K/Q channels and column-major in the V
channel, as shown in Fig. 6 (a) and (b), respectively. The
aggregated results are stored in the scratchpad according to
the layout strategy introduced in the previous subsection.

2) DDMM: Each shard Ks within the K-channel RPU is
read from the scratchpad and transmitted rightward to the
corresponding Q-channel RPU within the same row, whose
pipelining is shown in Fig. 6 (Unicast 1 ). Each Q-channel
RPU computes a local partial attention score, which is then
aggregated through a vertical reduction across Q-channel RGs
to obtain the full attention score shard Ss (Reduction 2 ). A



local Softmax operation is applied as Ss is passed to the V
channel. We adopt the softmax algorithm from FlashAttention,
which requires storing intermediate values such as Os and
rowmax, etc. These are held in the O-channel scratchpad. Par-
tial results received from the V channel are combined element-
wise with previously accumulated values and written back to
the O-channel scratchpad (Unicast 2 ). Once completed, each
full Os shard is broadcast across the corresponding O-channel
RG (Broadcast 2 ), followed by a vertical reduction to finalize
the output (Reduction 3 ).

Under the proposed spatial and temporal mapping strategy,
dataflow aligns cleanly along horizontal and vertical paths.
This regularity enables an expected balance between minimiz-
ing traffic collisions and maximizing parallelism.

C. Decode Dataflow

In the decode stage, two key differences distinguish it from
the prefill stage: (i) only a single newly-generated Q vector is
involved in the attention computation, and (ii) newly-generated
K/V vectors are incrementally appended into the scratchpad
at each timestep. Due to this limited parallelism, the QKT

pipeline shown in Fig. 6 may be underutilized, leading to
reduced throughput compared to the prefill stage, as will
be demonstrated in Section VI. Nevertheless, the caching of
newly generated K/V vectors adheres to the same placement
strategy shown in Fig. 5(b), which inherently ensures balanced
scratchpad utilization across routers. This approach eliminates
the need for additional data movement or shifting, offering
an improvement over prior KV-cache management techniques
such as those in [18], especially on scalable architectures.

V. HARDWARE IMPLEMENTATION

A dedicated NoC is designed to facilitate effective commu-
nication among PEs and to support the DDMMs and aggrega-
tions in the IRCU. The NoC architecture comprises three key
components: the program memory, the main controller, and
the router mesh.

A. Instruction Format

The co-processor programs the NoC program memory
(NPM) with instructions. Each instruction comprises two
components: a command pair (CMD1, CMD2) and a con-
figuration word, which are written to the command register
and configuration register, respectively, as illustrated in Fig. 7.
The configuration word encodes the command repetition count
(CMD rep) and the router selection bits (Sel bits). CMD1 and
CMD2 can be executed concurrently, each directing data along
a distinct, non-conflicting path. This design aligns with the
earlier elaborated dataflow, which shows that concurrent data
movement typically occurs in at most two directions.

An alternative instruction-reading scheme combined with a
double-bank design is employed to minimize idle time. NPM
consists of two independent banks, each containing a set of
command and configuration registers. These banks are con-
figured alternatively by the co-processor: while the controller
reads instructions from one bank, the co-processor programs

Fig. 7. Overview of the NoC system architecture.

the other. For example, when the controller is reading from
Bank 2, Bank 1 is simultaneously configured, and vice versa.

The NoC main controller (NMC) is responsible for fetching
and decoding the instructions from the NPM to orchestrate
data movement. During decoding, the instruction is split into
two commands, CMD1 and CMD2, which are dispatched
to the router command crossbar. The command crossbar is
a 3-input, N -output structure, where N corresponds to the
number of routers in the network. Each router concurrently
executes either CMD1, CMD2, or remains IDLE, repeating
the operation for the number of times specified by CMD rep
in the configuration word. A command repeat counter keeps
track of the remaining repetitions by decrementing on each
cycle. Once the counter reaches zero, it signals the program
counter (PC) to advance to the next instruction.

A Python API is provided to facilitate programming the
LLM inference dataflow to the 2D mesh NoC. The compiler
then translates the user’s Python code into a corresponding
hex file that can be loaded into the NPM for execution.

B. Router Implementation

Each router includes five data I/O ports: four for inter-
connection with adjacent routers (North, East, South, and
West), and one for communication with the locally attached
PE. Incoming data from these ports are buffered in dedicated
FIFOs. The IRCU supports key operations including: partial
result summation (used in Reductions 1 / 2 / 3 ), activation
functions (e.g., Softmax), and multiply-accumulate (MAC)
computations (used in DDMMs). The output crossbar switch
is a 4-input-5-output crossbar, allowing data to be routed to
adjacent routers or the local PE. This architecture supports



TABLE I
SYSTEM-LEVEL HARDWARE CONFIGURATION

Component Specs Component Specs
Architecture level (for Llama 3.2-1B)

Tile # 64 Channel # 4 per tile
RPU # 32 per channel Macro # 8 per RPU

Macro level
XB size 128×128 XB cell 8-bit

Scratchpad size 32 KB Scratchpad width 16-bit
Rout. buf. size 256 B Rout. buf. width 16-bit
Packet width 64-bit MAC # 16

Fig. 8. Distribution of the communication cost in a spatial mapping space
exploration of mapping an attention layer in Llama 3.2-1B to 1024 macros.

multi-cast, enabling a single data packet to be forwarded to
up to five destinations concurrently.

VI. RESULTS AND DISCUSSIONS

A. Experimental Setup

Hardware testbed: The hardware configurations are sum-
marized in Table I. The digital components (routers and
controllers) are implemented in Verilog HDL and synthesized
using Synopsys Design Compiler at a 45 nm technology
node [19]. Power estimation is performed with Synopsys
PrimeTime, using switching activity data from post-synthesis
simulations, and place-and-route is carried out using Ca-
dence Innovus. Scratchpad area and power are estimated via
CACTI [20]. The area and power of the PIM PE, featuring a
128×128 RRAM crossbar array, are adopted from [15].

Performace benchmark: End-to-end throughput is evalu-
ated on various LLMs: Llama 3.2-1B [12], Llama 3-8B [10],
and Llama 2-13B [9], using an instruction-level simulator
customized for the proposed NoC instruction set.

B. Mapping Space Exploration

To evaluate the optimality of the proposed spatial mapping
strategy, we perform a design space exploration based on
the heuristics described in Section III-B. Fig. 8 shows the
distribution of the communication cost for mapping an atten-
tion layer of Llama 3.2-1B onto 1024 macros, across 2,592
evaluated spatial mapping candidates. The results confirm that
the adopted strategy yields one of the lowest communication
costs among all evaluated mappings. It is worth noting that this
communication cost evaluation is based on a coarse-grained
X-Y routing algorithm and does not incorporate the fine-
grained temporal mapping strategies discussed earlier. This

Fig. 9. Example layout of a 2×2 macro array and area breakdown on the
macro-level and router level.

TABLE II
MACRO-LEVEL POWER AND AREA BREAKDOWN

Power (µW ) Breakdown Area (mm2) Breakdown
PIM PE 32.37 [15] 15.08% 0.0864 [15] 73.16%

Scratchpad 37.80 23.53% 0.0125 10.58%
Router* 90.48 56.32% 0.021 17.78%

Total 160.65 100% 0.1181 100%
* The digital results are obtained on 45 nm PDK and then scaled to 7 nm.

explains why the selected mapping, while near-optimal, is not
the absolute minimum in the distribution.

C. Power and Area Breakdown

The power and area breakdown of a macro, scaled to the 7
nm technology node, is shown in Table II. Further breakdowns
at both the macro and router levels are illustrated in Fig. 9.
Although the router accounts for only 17.78% of the macro’s
area, it contributes to 75.10% of the energy consumption
due to its central role in data communication and dynamic
processing. Thanks to the scalability of the 2D mesh topology,
the area distribution remains consistent even as the system
scales.

Table III compares the proposed system with state-of-the-
art GPUs, A100 and H100, in terms of throughput, power,
and energy efficiency. The throughput is evaluated with a
full context window of 2048 tokens: 1024 input tokens and
1024 output tokens. Compared to A100, the proposed system
achieves ∼2.55× higher throughput and ∼71.94× higher
energy efficiency. While its throughput is lower than that of
the H100, it still delivers a ∼24.22× improvement in energy
efficiency. The significant improvement in energy efficiency
is attributed to the reduced data movement overhead enabled
by the fully distributed compute/memory architecture and its
highly optimized dataflow, in contrast to the conventional
shared-memory design of GPUs.

D. End-to-end Throughput

Fig. 10 illustrates the inference throughput across various
models and context window sizes, with further throughput
breakdown into the prefill state and the decode stage. The
decode throughput is generally 4∼6× less than that of the
prefill stage. This degradation is primarily due to two factors:
i) The number of past tokens that each newly generated token



TABLE III
COMPARISON TO GPU PLATFORMS

Ours A100 [18] H100
Frequency (GHz) 1 1.4 1.7

Throughput* Llama 3-8B 202.25 78.36 274.26
(tokens/s) Llama 2-13B 120.62 47.86 167.51

Power (W) 10.53 ∼300 ∼350
Energy efficiency Llama 3-8B 19.21 0.2612 0.7836

(tokens/J) Llama 2-13B 11.45 0.1628 0.4786
* Tested context window: 1024 input tokens, and 1024 output tokens.

Fig. 10. Throughput under various models and input/output sequence lengths.

must attend to keeps increasing; and ii) Only a single Q vector
is involved in the QKT operation in the decode stage, leading
to underutilization of the pipelined routers in the Q-channel
RPUs.

The throughput drops sublinearly with the increase of model
sizes, which stems from both how models scale and the critical
path in the proposed architecture. Model size typically scales
along three dimensions: the embedding dimension, the MLP
hidden dimension, and the number of layers, whose scaling
factors are denoted as se, sh, and sl, respectively. Under
such scaling, the attention and MLP layers approximately
increase in parameter count by factors of (s2e)× and (se ·sh)×,
respectively. For example, when comparing Llama 3.2-1B and
Llama 3-8B, it is se = 2, sh = 1.75, and sl = 2, resulting
in an overall model size increase of roughly ∼8× model.
However, thanks to the proposed row-wise and column-wise
partitioning in both spatial and temporal mapping, the critical
path for operations such as broadcast, reduction, and DDMMs
is primarily determined by the longest horizontal or vertical
communication route. As a result, the critical path scales
approximately with se ·sl or sh ·sl, instead of the full se ·sh ·sl
factor, which explains the sublinear drop in throughput.

Fig. 11 shows the breakdown of clock cycles by instruction
along the critical path when processing an attention layer and
its corresponding MLPs in Llama 3.2-1B, for both the prefill
and decode stages. Thanks to the overlapping of computation
and communication, along with the high parallelism of PIM
PEs, PIM operations rarely lie on the critical path. Instead,
latency is predominantly bottlenecked by data movement and
DDMM operations within the IRCUs. To investigate ways

Fig. 11. Breakdown of clock cycles on the critical path by instructions in
processing an attention layer and its subsequent MLP in Llama 3.2-1B. mul
and add stands for the computations in IRCU.

Fig. 12. Trend projection of throughput under increased packet bit-width and
IRCU parallelism.

to alleviate this bottleneck, we evaluated throughput under
different packet bit-widths and IRCU parallelism levels. The
resulting trends are presented in Fig. 12, which illustrates the
trade-offs between communication bandwidth and compute
parallelism. The roofline analysis confirms that the configu-
ration used in this work — 64-bit packet width and 16-way
parallelism in the IRCU — achieves near-optimal through-
put at the performance frontier, without incurring excessive
resource overhead.

VII. RELATED WORK

A. Parallelism in Machine Learning

1) LLM in Distributed GPUs: Various parallelism strate-
gies on datasets, model weights, context windows, etc, have
been adopted for scaling LLMs on GPU clusters [11]. These
approaches often rely on high-performance collective commu-
nication fabrics such as NVLink to manage synchronization
overhead. In contrast, the fine-grained parallelism enabled by
tensor partitioning and RPU dataflow optimization in this
work is tailored to low-level on-chip interconnects, making
it more suitable for domain-specific and energy-constrained
applications.

2) Neural Network Accelerators: Neural networks (NNs)
have been widely accelerated using spatial architectures, in-
cluding fully digital designs [21], [22] and PIM-based archi-
tectures [13], [14], [23], [24]. Much of the analysis in NN
accelerators focuses on exploiting parallelism by unrolling the



TABLE IV
COMPARISON TO SOTA PIM-RELATED LLM ACCELERATORS

Projection Attention Interconnect Dataflow
LEAP (This work) PIM In-router dataflow accelerator 2D mesh network-on-chip Fine-grained parallelism
ReTransformer [6] PIM PIM Customized on-chip bus Matrix decomposition + fine-grained pipelining

TranCIM [4] PIM PIM Customized on-chip bus Coarse-grained pipelining
CPSAA [7] Hybrid PIM Hybrid PIM Customized on-chip bus Sparsity-aware
HALO [5] Hybrid PIM Systolic array 2.5D network-on-package Coarse-grained mapping optimization

H3D-Transformer [3] PIM PIM + systolic array 2.5D network-on-package Hybrid-precision + coarse-grained pipelining

nested loops inherent in convolution operations [25], [26].
Compared to attention layers in LLMs, these nested loops
tend to be deeper, but the operand matrices are smaller and
generally limited to DSMMs rather than the hybrid of DSMMs
and DDMMs of LLMs.

B. Emerging Spatial Architecture

Spatial architectures distribute modularized memory and
computing resources across a spatial array, enabling flexible
parallel execution and enhanced data locality. Emerging exam-
ples in ML acceleration include coarse-grained reconfigurable
arrays (CGRAs) [27], [28] and Cerebras Wafer-Scale Engine
(WSE) [18]. In contrast to these existing designs, this work
incorporates heterogeneous memory and compute resources
within each PIM-NoC macro, providing heterogeneous opti-
mization space for both DSMMs and DDMMs.

C. PIM-based LLM Accelerator

A range of customized PIM designs have been proposed
for LLM acceleration, as summarized in Table IV. Re-
Transformer [6] enhances attention pipelining by decom-
posing intermediate matrices to improve dataflow efficiency.
TranCIM [4] introduces transposable SRAM arrays and im-
plements a coarse-grained pipeline across Q/K/V stacks using
a dedicated streaming interconnect. CPSAA [7] improves
the attention pipeline by applying transposition on input ac-
tivations and supports unstructured dynamic sparsity prun-
ing for DDMMs. HALO [5] leverages a 2.5D integrated
architecture that combines PIM-based chiplets for DSMMs
and systolic array-based chiplets for DDMMs, optimizing
inter-chiplet communication through coarse-grained mapping
strategies. H3D-Transformer [3] adopts a hybrid-precision
approach: low-precision PIM arrays approximate DSMMs,
while high-precision digital units refine results to preserve
accuracy. While most existing works focus on algorithm-
specific optimizations with limited scalability, this paper pro-
poses a scalable architecture that integrates modular com-
pute/memory/communication resources and flexible dataflow
to enhance LLM acceleration.

VIII. CONCLUSION

This paper presents an aggregated NoC-PIM architecture
for LLM inference acceleration that fully amortizes the com-
putations in the memory and routers. A dedicated end-to-end
framework orchestrates the model partitioning, mapping, and
scheduling, ensuring high resource utilization and parallelism.

Evaluation results demonstrate substantial improvement in
throughput and energy efficiency for the Llama model family
compared to the on-shelf GPUs. Furthermore, the architecture
is highly scalable, accommodating model growth and expand-
ing context windows, with potential for integration with future
wafer-scale and network-on-package technologies.
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